
Int. J. Multiphase Flow Vol. 15, No. 2, pp. 269-278, 1989 0301-9322/89 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1989 Pergamon Press/Elsevier 

R E A C T I N G  S O L I D  P A R T I C L E S  I N  O N E - D I M E N S I O N A L  

N O Z Z L E  F L O W  

S. S. GOKHALE a n d  T. K.  BOSE 

Department of Aerospace Engineering, Indian Institute of Technology, Madras, India 

(Received 26 September 1986; in revised form 15 October 1988) 

Abstract--A fully conservative explicit scheme for a solid-particle-laden gas flow in a convergent- 
divergent nozzle is studied numerically as a direct time-dependent problem for a one-dimensional flow. 
The initial conditions at t = 0 are taken from the similarity solution. The boundary conditions at the 
nozzle inlet are determined by taking an arbitrary large cross-section at the first grid point before the 
nozzle inlet and are held constant with time. The exit boundary conditions are obtained at the grid point 
next to the exit plane from the values extrapolated at the exit plane. The particle burning rate is assumed 
to be a function of pressure. A time-dependent predictor-corrector formulation with a fourth-order 
damping term is used. Convergence of the result is assumed when the throat Mach number change is 
<0.0001, generally in ~< 400 time steps. 
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1. I N T R O D U C T I O N  

Large particles entrained in a rocket exhaust contribute to momentum degradation and component 
erosion (Hess 1985). The problem is particularly severe in a recent concept of an integral 
rocket-ramjet, where an initial solid propellant rocket is followed by a ramjet (or a ducted 
rocket) stage using large quantities of metallized particles burning with ambient air (Billig et al. 

1980; Vanka et al. 1985). In both the above applications one encounters reacting solid particles. 
This paper deals with a direct numerical method to calculate the flow properties for a one- 
dimensional convergent-divergent nozzle having a reacting particle-laden gas as the flow medium. 
Such an approach enables one to easily compare results with the one-dimensional theory of pure 
gas flow. Although for a pure gas a one-dimensional approach forms part of any textbook on gas 
dynamics, evaluation of a two-phase flow theory for such a nozzle has developed very slowly, 
and to date the standard assumption is that the particles are non-reacting and that the particle 
drag and the heat transfer relations are the low Reynolds number (Stokes regime) expressions. 
Kliegel (1962) studied the case of constant particle velocity/gas velocity ratio (a similarity 
parameter), and various aspects of such flows were studied by Rudinger (1970) and Bose (1982). 
An interesting method by Hassan (1964) attempts to obtain a nozzle shape from a given distribution 
of the similarity parameter. However, such analyses invariably lead to impractical nozzle shapes. 
A direct numerical method for a one-dimensional two-phase flow was presented by Hultberg & 
Soo (1965), and was reported again by Soo (1967) for a very special nozzle. The method fails in 
the general case because of the difficulty in estimating the location of the point of singularity at 
the point of sonic crossing, which in a particle-laden gas flow is downstream of the nozzle throat, 
with any desired accuracy. Therefore it is conjectured that a time-dependent equation system, which 
is a hyperbolic-type equation system and is not dependent on whether the flow is subsonic, 
transonic or supersonic, is most suited for analysis of a two-phase system. In the present paper 
the governing equations, including the particle reaction terms, are nondimensionalized and more 
accurate particle drag and heat transfer laws are used, thus relaxing the low Reynolds number 
approximations used by other authors. Finally, a numerical solution for a fully conservative 
equation system is described and the numerical results presented. For this purpose an effort is made 
to balance various interaction terms in the mass, momentum and energy conservation equations 
for both gas and particles, and thus the method is slightly different from that used by Sharma & 
Crowe (1978). 
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2. ANALYSIS  

The underlying assumptions of  the present analysis are as follows: 

1. There are no viscous or heat transfer effects for those associated with the drag 
and heat transfer between the gas and the particles. 

2. The particles are spherical and uniform in size at a given location, with diameter 
ds, mass Ms, temperature Ts and material density p~. 

3. The particles and the gas flow can be considered as being one-dimensional--their 
respective property values at any cross-section represent the average value across 
the section. 

4. The gas obeys the ideal gas law. 
5. The gas specific heat at constant pressure %G, the gas Prandtl number Pr C and 

the particle specific heat cs are all constant. 
6. In the case of  reacting particles the particle diameter is reduced and the reduced 

particle mass content is converted to gas. 

The basic unsteady equations for each of the species j (gas, particle) are: 

continuity, 

p~ + v .  (py) = m~j; [1] 

i -momentum,  

(pyj,), + v • (pj~,vj) = - V p j +  ~,; [2] 

and 

internal energy, 

(pjef) t  + V . (p jVje f )  = - V . (pjVj) + V s • Fj -'[- a j  -'[- QRj. [3] 

In the above equations pj is the density of the j th  species (j = s,G for solid and gas, respectively), 
Vj is the velocity vector for the j t h  species, pj is the partial pressure of  the j th  species and Fj is 
the volumetric force acting on the j th  species. Now the relation between the specific internal total 
energy of the species, e l ,  and the specific total enthalpy of the species, h i ,  is 

e;  = h; P1 
Pj 

and the energy equation for the species in terms of  the specific total enthalpy is thus, 

(p jh;  - p ) ,  + V . (pjh;Vj)  = Vs " Fj + Qj + QRj. [4] 

In [4], Qj and QRj are the interphase energy transfer rate and chemical energy addition rate of  
the jth species. 

Multiplying the momentum equation by the respective velocity component and adding, gives 

( P ~ ) t  + V. ( ~ ) = - , V j .  Vpj)+ Vj. Fj. [5] 

Subtracting [5] from [3] and [4] we get 

(pjej) t + V " (pjVjej) = - p j V  " V j  + ~.j + ORj "[- (Vs -- V j ) '  ej [6] 

and 

(pjhj - P j ) t  + V • (pjVjhj) - (Vj • Vpj) = Oj + Q.j + ( V s -  V+)" E .  [71 

It is obvious that for solid particles Ps = 0. Further, in [1]-[7] the variables mRj, Fj and Oj have 
opposite signs for the gas and the particles; this is due to the mass rate of  production, the drag 
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on the particles due to the difference in velocities between the particles and the gas, and the heat 
exchange between the gas and the particles due to the difference in the temperature between the 
particles and the gas. Thus, rhRj= +rhR,Fj=  + F  and Qj= _+Q, where the upper sign is for 
the particles and the lower sign is for the gas. Thus, from [4] with no chemical reaction and for 
a steady state, 

V. (pGh~VG) + V. (pse~Vs) = 0. 

For the calculation of QRy it is assumed that a large fraction of the thermal energy released due 
to chemical reaction goes to the gas and the rest to the particles. Thus, for the gas, 

and for the particles, 

QRg = flmR A H  

ORs = (1 - 3)rhRAH, 

where fl is the fraction of the chemical energy released going to the gas and AH is the chemical 
energy released per unit mass of the particle• 

If n~ is the number density of the particles, the mass rate of production of the particles, mrs, is 

• 2 , d~ mRs = 7rd~nsp~ds = 3ps [8] 

and d~ is the rate of reduction of the particle diameter, d~, per unit time (a negative quantity). This 
model, therefore, assumes that the solid particles vanish due to chemical reaction and do not get 
converted into different particles, e.g. metal particles becoming metallic oxide particles. We now 
estimate the other interaction terms. 

Estimation o f  the interaction terms 

At low Reynolds numbers Re in the Stokes regime, the drag coefficient coo and the Nusselt 
number Nu0 are given by the relations 

24 and Nu0 ctd~ 
Coo = Re = ~ = 2, 

where Re = pGds(VG -- V~)/#G. TWO ratios are defined to characterize the drag coefficient and the 
Nusselt number with respect to their values at low Reynolds numbers. Herein #G is the dynamic 
viscosity coefficient of the gas, 

Nu 
fo = c__p_D and f N -  

Coo Nu 0" 

The drag and the heat transfer for a single particle are 

and 

D I =  
CopG( VG - V~)2nd~ 

Q, = mtd~(T s - TG) = nkGNud~(TG -- T~). 

Noting that the mass of a single particle is Ms1 , a = rrpfl~/6, then the force and the energy balances 
in the Stokes regime give 

M d V s CDo~d~pG( VG - -  Vs) 2 
~1 - ~ -  = Dr0 = 8 

and 

dT~ 
M,,c~ --d7 = 0.,o = nkGNUod~( TG -- T~). 
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This gives two expressions for the velocity and the temperature changes in the Stokes 
regime: 

dV, _ 18/.(G(VG -- V,) 
d t  , 2 (p sds) 

and 

dT~ 12kG(TG -- T,) 

dt , z (p ,e f t , )  

In the above, kG is the heat conductivity coefficient of the gas and ~ is the temperature of the 
j th  species. 

Assuming a step change of the gas velocity and the gas temperature at time t = 0, two relaxation 
times can be defined, one for the gas velocity and one for the temperature. The velocity relaxation 
time for the Stokes regime is 

t 2 
psds 

z - (I 8#G~" [91 

With ns being the number density of the particles, the mass density of the particles is Ps = nsMs~ 
and the volumetric force F and the heat exchange term Q are 

F = - nsD~ - 
p,( vG - w3 

(fib) 

and 

Q = - n , Q ,  - (~)p 'kG(TG --  T,)  

ThefD andfN relations used in the present paper are the drag and Nusselt number correction, and 
are defined as follows: 

Re < 1000: fo  = 1 + 0.15 Re °687 (Rowe 1961) 

Re > 1000: fo  = 0.01833 Re 

fN ---- 1 + 0.2295 Re°'55Pr °'33. 

One-dimensional nozzle f low 

From [1]-[7] the following vector equation can be written for a one-dimensional two-phase nozzle 
flow: 

E t + G ~ = H ,  [10] 

where 

E =  

PG A 

PGUG 

pG h 0 __ PG 

p~A 

psUs 

ps e° 

G =  

pGUGA 

pGU~ + PC 

pGUGh ° 

psu~A 

p,u~ 

p~u~e ° 

and H = 

mR A 

F 

u~F + ~ + f l rhRAH 

-- rnaA 

- F  

- u y  - ~ + <1 - ~ ) , n O H  
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where 

u~ 
h~ = c ~ T o  + - f  , 

u ~, 
e~ = csTs +-~ ,  

F = p,(us - Uo) 
(TfD) ' 

= (~ )psko(ro  - 7",) 

(~TfN)  

and A is the cross-sectional area. 
The mass rate of production term can be estimated assuming that the solid particles burn fully 

and get converted into the gaseous form. Let ds be the particle diameter at a particular location, 
which can be calculated from the nozzle inlet particle diameter d,0 and the elapsed time up to the 
location under consideration from the relation 

ds = d~o - f bpa dt, [1 1] 

where b and n are burning rate parameters, and r = bp~ is the burning rate. Thus, the rate of change 
of  the diameter o f  the particle is ds = -bp~. If the number density o f  the particles ns remains 
constant through the nozzle, then from [8] and [11] we get 

3psbp~o 3psbp~ 
rhRs = = - [121 

d~o - f bp~ dt d,o - dkI(bP~us / dx" 

It is obvious from [12] that the denominator must remain positive, which places limits on the value 
of n, the length of the nozzle and the value of b. 

Non-dimensionalizing the equation 

Equations are non-dimensionalized with the help of the following non-dimensional variables: 

X* = L ,  t* = Ut us uG 
- y  , u ? = - 6 ,  u ~ = - 6 , 

pcRo T ° PsRo T ° = P__~c 
P * =  p--"-z---, P,*-- pO , P~ . o ,  

rn R = rhRRGT°L F* FL Q ,  QL c* cs AH* = AH Cv U~ 
(p°U) ' p° (p°U) '  c~  (ceaT°) ' L ' 

Thus, one gets 

and 

K, (~-1__..~) Ud~o and U = w/~poT °. 
= (2~) ' Kz=(Lro----) 

h~* -- T~ + u~ 2, 

e~* = c ' T *  + u *~, 

p *(u~ - u,*) 
F* = 

(CFfDKO 

Q ,  p * ( T * - T * ) .  

-- (3Ki fsProCv)' 

Ts h~*= h~ eO , =  e~ A* At D,. _#oc~ 
7"* = ~ ,  ~r = _ ~ ,  C c ~ r ° )  ' ( c , ~ r ° )  ' = ~ "  - °  - T ~  ' 
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and for chemical reaction, 

6p~ 

j \ u ,  / j 
The non-dimensional form of [10] is now 

E* + G* = H*, 

where 

E *  

and 

p~ 
A* 

RGUG 

, , , t ,o ,  _ 2KtpG* y G~'~ G 

p* 

A* 

p~*u~ 

p*e~ ~* 

G *  

PGUG 
A *  

p*u .2 + K I p *  

p * , ,  * l ,  o, 
G~Gr~G 

p~*u*~ 
A *  

p,u*2 

p * p ° * 1 1 *  s ~ s  w s  

[131 

,n* 
A* 

KIF* 

2KI(u*F* + Q*) +/~AH*rh~ 
H *  = 

_ m ,  
A* 

- KIF* 

- 2 K , ( u * F *  + Q*) + (1 - /~)AH*rh* 

Equation [13] is now a non-dimensional partial differential equation of hyperbolic type with respect 
to time, which has to be solved. In the above K1 and K 2 are constants an d / t  is the fraction of  
chemical energy going to the gaseous phase. 

3. RESULTS AND DISCUSSION 

Solution of [13] was obtained using the MacCormack (1969) explicit predictor-corrector scheme. 
Herein a fourth-order damping term with a damping coefficient of 0.1 was used to suppress 
non-linear instabilities. A standard three-point smearing technique using 95% weighting on the 
point under consideration and 2.5% on either side was used to smooth the flow variables. The 
integration time step was determined by the following expression: 

At = C F L .  Ax  /[ u + a [ , 

in which CFL is the Courant-Freidrich-Lewy number. With a reactive flow, it is necessary to use 
a smaller time-marching step. Typically, CFL was taken as 0.001. 

The initial conditions for this problem were obtained using a one-dimensional isentropic flow 
analysis based on the average mixture properties. Subsequently, the individual phase arrays are 
obtained from the velocity lag K, and the mass fraction m* assumed. Thus, the initial conditions 
bear the following relationship between the phases: 

(p*. u*) 
u* K '  * * = UG, m = - -  and T * = I - L . ( 1 - T ~ ) ,  (p*. u~) 

where L is the temperature lag, and can be expressed as a function of  K. 
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The exit boundary condition is based on a simple linear extrapolation of the conservation 
variables represented in vector E* of [13]. Since the exit flow was observed to be always super- 
sonic, this treatment of the exit boundary was found to be satisfactory. The inlet boundary 
condition uses a much simpler method as compared to the characteristic formulation. The reservoir 
condition is associated with a large value of A/Athroa t  = 10. The stagnation pressure and the 
temperature are fixed at reservoir values but the velocity is allowed to develop as a part of  
the solution by backward linear extrapolation. Finally, the density is evaluated from the equation 
of state. This method was used by Anderson (1970) for time differencing quasi-one-dimensional 
equations. 

The convergence criteria used here dictates that the relative error in the throat Mach number 
is < 1 x 10 -4 and the relative error in the throat mass flow rate is < 1 x 10 -5 in consecutive 
integrations. For  this study, flow through a JPL axisymmetric nozzle with 45 ° entrance and 15 ° 
straight wall exit sections is considered. Details of this nozzle are shown in figure 1. The flow field 
is divided in 22 equally-spaced grid points and the converged solution requires approx. 400 
integration steps for all the cases presented here. 

Typical data used in this study are as follows: T ° = 5 5 5 . 5 K ,  p ° = l . 0 3 4 x  106pa, 
b = 4.5 x 10-6m/(Pa) ", n = 0.5 (burning rate is 4.5 mm/s at 1.034 x 106pa pressure), 7 = 1.4, 
cp = 1070 J/kg K, PrG = 0.74, /~° = 2.68 x 10 -5 kg/m s and AH = 2.7 x 10 7 J/kg. 

Figure 2 shows the computed Mach number variation and the pressure variation through the 
nozzle for a reactive flow with a solid particle of size of 20 #m. The sonic flow occurs downstream 
of  the throat, which is located at the non-dimensional axial distance of  0.6. The Mach number and 
the pressure variation exhibit a similar trend for all the other cases investigated. Thus, for 
subsequent studies the Mach number at two locations, namely the throat and the exit, are used 
as parameters for comparison. This is adequate since the thrust developed depends essentially on 
the exit Mach number. 

Figure 3 shows the throat Mach number as a function of the initial solid particle diameter d,0. 
If the particles are nonreacting the throat Mach number is almost independent of  the particle size 
for the size range considered. In the case of reactive particles: (a) the solid size changes through 
the pressure-dependent burning rate law; (b) the interphase momentum and heat transfer not only 
depend on the velocity difference between the two phases but also on the instantaneous particle 
size; (c) the solids gasify, adding to the mass of the gaseous phase; and (d) the combustion of solids 
adds heat to both the gaseous and solid phases in arbitrary proportions. As a consequence of the 
above, the reactive particles cause a greater throat Mach number variation as compared with the 
inert ones. This is especially true for smaller sized particles. This can partially be explained by the 
fact that the interphase transfer terms, as well as the source terms, are inversely proportional to 
the square of  the size of  the solid particles. 

Figure 4 depicts the exit Mach number variation with respect to the solid size. Here the trend 
is similar to that seen in figure 3. In the case of reaclive flow the exit Mach number is 1.917 for 
10/~m size particles compared with 1.967 for 50/~m particles. 
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Figure 1. Shape of the JPL nozzle used for the 
calculation. 
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Figure  4. Exi t  Mach  number  vs ini t ial  solid diameter .  

Figures 5 and 6 show the effect of the solid mass fraction m* (defined as the ratio of the solid 
mass flux/gas mass flux at the inlet) on the Mach number. The mass fraction can also be defined 
in terms of the ratio of  the solid mass/mixture mass (Chang 1980). Reduction in the mass fraction 
implies fewer solids and thus lower resistance on the gas flow. Thus, the throat and the exit 
Mach number are higher for lower mass fraction values. As shown in figure 5, the throat 
Mach number is considerably different for the inert and the reactive particles. However, as is 
evident from figure 6, there is very little difference between the two with regard to the exit Mach 
number, up to a mass fraction rn* = 0.75. The exit Mach number drops from a value of 2.3 at 
m* = 0.1 to 2.0 at m* = 0.75. Beyond this mass fraction, the difference is greater. In the case of  
the reactive particles, the exit Mach number reduces from 2.0 to 1.95 at m* = 0.1. 

Figures 7 and 8 show the variations of Mach numbers with respect to the ratio of solid/gas 
specific heat. Corresponding to the lower solid specific heat, the gas-phase Mach number is greater. 
Once again the throat Mach number shows greater variation between the reactive and the inert 
particles. When comparing the exit Mach number against the mass fraction variation, it is found 
that the exit Mach number is more sensitive to the specific heat ratio. For example, for c* = 1.5, 
the exit Mach number remains supersonic, although it is reduced to 1.89. 

4. C O N C L U S I O N S  

Previous efforts reported in the literature have concentrated on the area of non-reacting solid-gas 
flow through nozzles. The present work investigated the effects of other important parameters, 
such as specific heat ratio and reacting particles, on one-dimensional two-phase flow through a 
nozzle. 
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specific heat ratio, heat ratio. 

The following key conclusions have been reached from this study: 

1. Smaller sized reacting solid particles slow down the gases considerably. As the initial particle 
diameter increases, the throat and the exit Mach number appear to be approaching a nearly 
constant value asymptotically. 

2. As observed by other investigators, by suitably combining the solid loading with the solid size 
the exit Mach number can be suitably modified. This effect is enhanced in the case of reacting 
particles. 

3. Variation of the specific heat of the particles has a marked effect on the exit Mach number. 
4. Finally, the effect of the continued combustion of the solid particles throughout the nozzle 

results in a reduction of the gas velocity. 
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